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A. PROJECT WEBPAGE LINK

B. What is Subset Sum Problem?

The Subset Sum Problem belongs to category of decision
problems. The problem states that given a set (or multi-set) of
integers, is it possible to construct a non-empty subset whose
sum is equal to zero? For example, given the set { -40, -2, 1,
2, 3, 4 ,5 ,6 } , the answer is ”yes” because the subset { -2
,2 } sums to zero.

The Subset Sum Problem belongs to complexity class of
NP-complete, meaning it is easier to evaluate whether the
final result obtained is correct or not. Also, this checking can
be done in polynomial time. The problem itself takes non-
deterministic polynomial time to find the solution. The subset
sum problem is used in the field of complexity theory and
cryptography.

In computational complexity theory, a problem is NP-
complete when it can be solved by a restricted class of
brute force search algorithms and it can be used to simulate
any other problem with a similar algorithm. More precisely,
each input to the problem should be associated with a set of
solutions of polynomial length, whose validity can be tested
quickly (in polynomial time), such that the output for any input
is ”yes” if the solution set is non-empty and ”no” if it is empty
[1]

The Subset Sum Problem can be thought of as a modi-
fication to knapsack problem where the limit of the bag is
infinite and the assumption that the weight of the elements can
be negative.

C. Variations of Subset Sum Problem

1) Subset Sum Problem where the sum is equal to some
constant. This variation is extension of the question such
that the sum instead of 0 can be any other integer k
Example - Suppose the parent set is {-2 ,0 ,1 ,3}. and
we are find subset such that sum equals 2. The answer
is ”yes” the subset {-2 ,1 ,3} gives the sum=2.

2) Subset Sum Problem where it is possible to subdivide
this set into two strict subsets such that the sum of

elements of one set is equal to another set. Example
- Suppose the parent set is {-2 ,0 ,1 ,3}. The answer is
”yes” the subsets are {-2 ,3} and {0 ,1 } where the sum
of elements is 1

For simplicity we will just be working with the simple
variation where the subset sum has to be equal to 0.

D. Project Approach

For our project we will try to implement the Subset Sum
Problem problem using Quantum Computers. We will try to
run it in Qiskit . So suppose we have ’x’ elements in our
set and we are supposed to find the subset with ’m’ elements
such that m¡=x and the sum of ’m’ elements =0. So to work
with Quantum Circuits we will have ’x’ Qubits as our input
to the circuit and then the output will be in terms of qubit
value {0,1}. If the ith line’s output is ’0’ it signifies that the
ith element is not included in our answer. Similarly, If the ith

line’s output is ’1’ it signifies that the ith element is included
in our answer.

In our project we will be working on both the QAOA
algorithm in Qiskit and the Quantum Annealing algorithm in
DWAVE system. Objective of our project is to compare the
two algorithms and try to compare the results obtained from
both the methods and finally create an analysis table about it.
Finally we will be comparing these two approaches with the
exsisting classical approach.

E. Classical Approach

Using Dynamic programming the best solution is in terms
of O(2n). This is an exponential complexity which increases
heavily with larger n. There are various code available online
for the following subset sum problem.

F. Theory of VQE (Quantum Approximate Optimization Algo-
rithm) and QAOA

For combinatorial optimization, the Variational-Quantum-
Eigensolver (VQE) gives better results than classical algo-
rithms. The Variational-Quantum-Eigensolver (VQE) [1, 2] is
a quantum/classical hybrid algorithm that can be used to find
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eigenvalues of a (often large) matrix H. When this algorithm is
used in quantum simulations, H is typically the Hamiltonian of
some system. In this hybrid algorithm a quantum subroutine
is run inside of a classical optimization loop. The quantum
subroutine has two fundamental steps:

1) Prepare the quantum state |Ψ(vec(θ)), often called the
ansatz.

2) Measure the expectation value Ψ (vec(θ))|H|Ψ(vec(θ)).

So the VQE algorithm works as a subroutine to our QAOA
algorithm. This VQE is used to solve minimize/maximize the
parameters for our ising Hamiltonian generated.The heart of
the QAOA relies on the use of unitary operators dependent
on 2 p angles, where p > 1 is an input integer. These
operators are iteratively applied on a state that is an equal-
weighted quantum superposition of all the possible states in
the computational basis. In each iteration, the state is measured
in the computational basis and C ( z ) is calculated. After a
sufficient number of repetitions, the value of C ( z ) is almost
optimal, and the state being measured is close to being optimal
as well.

The QAOA algorithm solves the Combinatorial optimization
problems are specied by n bits and m clauses. Each clause
is a constraint on a subset of the bits which is satised for
certain assignments of those bits and unsatised for the other
assignments. The objective function, dened on n bit strings, is
the number of satised clauses, C(z) = ΣCα(z) where z =
z1, z2..., zn is the bit string and C(z) = 1 if z satises clause
α and 0 otherwise. Typically Cα depends on only a few of
the n bits. Satisability asks if there is a string that satises
every clause. In the QAOA algorithm our motive is to find
Approximate Optimization(To find a string (z) for which C(z)
is close to the maximum).

G. QAOA(Qiskit) in our Problem

To implement QAOA we will be using Qiskit Aqua as
it has well pre-defined libraries to make our task simpler.
The Qiskit itself provides implementation examples of TSP
problem,Vertex cut problem which act as the foundation for
our implementation.The next step in designing the QAOA is
to create a cost function for our problem. This will be really
helpful because using this we can also design the QUBO for
our DWAVE simulation.

One assumption we have made for our problem is that we
have the sum m in the subset that we are asking our code to
find.

So let us assume that the cost function for our problem is
C.

C =

m∑
j=1

xi ∗ ai

where xi belongs to 1, 0

1: if that element is taken in our final solution set
0: if not taken in our final solution set and ai is the ith

element in our initial set.

H. Challenges

1) The cost function is known but it’s QUBO formulation
is still unknown.
Reason: The above Cost function we have written is not
in the form QUBO. The QUBO format should be in
terms of xTQx which is not the case with us. This is
essential because in QAOA or any other optimization
algorithm, the first step is to generate the QUBO and
then try to minimize or maximize it. But the cost
function we have is not in that form.
Solution 1: Use of Docplex. This is a IBM designed op-
timization library which takes input in terms of classical
function and returns the QUBO form i.e in 2 ising model
Hamiltonian form. To obtain the accurate Hamiltonian
from Docplex we need to optimize our function and add
constraints to our function to obtain best hamiltonian
for our problem. The issue with this is that there are no
specific constraints for our problem. So the Hamiltonian
we construct is not in the best optimized form.
Solution 2: Use of library PyQubo. This is another
alternative to our problem which generates the QUBO
(2 ising model Hamiltonian) directly without adding any
constraints to our input function.

2) Let us for a while assume that the cost function we
established is correct. The problem arises is to determine
what the minimum energy level will be for the given
sum.
Reason: We don’t know whether minimizing or max-
imizing the cost function will yield the lowest energy
level or not. Solution: As now we are able to formulate
our problem in terms of Hamiltonian ,we now can
minimize our energy levels for our correct solution.

Also, in the paper ”Quantum Algorithms of the Subset-
Sum Problem on a Quantum Computer” by Weng-Long
Chang et al the authors discuss the approach of using Nu-
clear Magnetic resonance(NMR) to solve this problem.As
discussed by authors in the paper they have stated that
the QUBO implementation for the problem is challenging.

I. DWave (Quantum Annealing)

Quantum annealing (QA) is a metaheuristic for finding the
global minimum of a given objective function over a given set
of candidate states (candidate solutions), by a process using
quantum tunneling. Quantum annealing is used mainly for
problems where the search space is discrete (combinatorial
optimization problems) with many local minima; such as
finding the ground state of a spin glass.This system uses a 128
qubits.D-Wave’s architecture differs from traditional quantum
computers.

It is not known to be polynomially equivalent to a universal
quantum computer and, in particular, cannot execute Shor’s
algorithm because Shor’s algorithm is not a hill climbing
process. Shor’s algorithm requires a universal quantum com-
puter. D-Wave claims only to do quantum annealing. From
the implementation of QAOA we can extract the QUBO and



plug it into the DWAVE program.We also have to work out
the embedding for our problem

The QUBO Formulation :
QUBO: minimize Y = xTQx
To convert Y into symmetric form we can replace qij by

(qij + qji)/2 where i is not equal to j.
This information that we are extracting is from the QAOA

. We will be using this QUBO information and then construct
the implicit and explicit embedding for it.

J. Challenges in DWave

As the number of elements increases or decreases in our
problem set the problem of fitting the problem in our 4x4
Bipartite graph changes.

Solution: We can do is implicit embedding reducing the
complexity. But this may reduce the accuracy of our results.

K. Results and discussions

1) Analyzing results from DWAVE: Three elements in the
set

1) Occurrences (correct solution) vs the chain strength
We ran a simple for loop for ’chain strength’ from 0 -¿
100 (with increment of 5) to determine the variations in
our occurrence of our chain strength. For this particular
example, in our set we had elements 2 , 2 , 4 and the
sum to find = k = 4. We observe that for this particular
the subset solution we have 2 solutions 2 , 2 and 4. In
our solution both the solutions have the negative energy
levels. We observe that the graph has a peak at chain
strength = 5. We ran our code for different sets and for
different sets of the element. We saw that chain strength
= 5 gives best result for sets where the number of sets in
the set = 3. With increase in this cardinality of strength,
we get increase in the chain strength value.

2) Processing time vs chain strength This graph had an
interesting pattern. When the chain strength crosses the
point of 25 the processing time decrease. There can be
two reasons for this. Firstly, as chain strength increases
the solution 2,2 chances/occurrences increases.(As cou-
pling strength is high). Secondly, it might be possible
that till chain strength 20 the servers were busy and
hence the high processing time. We ruled out the second
scenario by running our solutions 3 times and still
obtained somewhat same graph.

Fig. 1. Chain Strength from 0− > 50

Fig. 2. Chain Strength from 0− > 10

Fig. 3. Processing Time from 0− > 50

Fig. 4. Processing Time from 0− > 10

2) Analyzing results from QISKIT: Three elements in the
set

1) Processing Time vs the circuit depth
We initially expected the graph between time vs depth to
be exponential but our results show that this dependence
of time on depth of the circuit is linear. We were not
able to assess the reason for this behaviour.

2) The Subset-Sum Objective vs depth
As expected from the graph, more depth we add to the
circuit more accurate the results we obtain. Subset Sum
objective for the correct solution should be zero. So the
graph turns out to be a graph in terms of error deviation
from 0 with respect to depth of the circuit.



Fig. 5. Processing Time vs the circuit depth

Fig. 6. The Subset-Sum Objective vs depth

3) The Circuit obtained for 3 elements with depth =5

Fig. 7. Circuit Diagram

L. Comparing the results from QISKIT and DWAVE

1) Processing Time
a) The solution obtained from DWave takes less time

to compute results as compared to Qiskit Aqua
(with minimum depth). This information can be
extracted by comparing the graphs in fig 1 and fig
5

b) When n (no. of elements in the set increases) in-
creases the solution sample also degrades exponen-

tially in both Dwave and Qiskit. The degradation
trend is more prominent in case of Dwave when
compared with Qiskit.

c) Weakness with Dwave is that as the problem set
space increases the number of used qubit also
increases and in Dwave the chimera graph is not
completely uniform. In case of Qiskit, the number
of qubo’s are limited with the IBM’s quantum
architecture
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