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Quantum Algorithms of the Subset-sum Problem on a Quantum Computer

Weng-Long Chang'”, Ting-Ting Ren?, Mang Feng*", Lai Chin Lu*, Kawuu Weicheng Lin® and Minyi Guo®

Abstract—In this paper, quantum algorithms for solving an
instance of the subset-sum problem is proposed and a NMR
experiment for the simplest subset-sum problem to test our theory
is also performed.

1. INTRODUCTION

In this paper, an instance of the subset-sum problem can be
implemented by our proposed quantum algorithm. By using
nuclear magnetic resonance (NMR) technique, we perform an
NMR experiment for the simplest subset-sum problem to test
our theory.

II. QUANTUM ALGORITHMS OF THE SUBSET-SUM PROBLEM

A. Definition of the Subset-sum Problem

Assume that a finite set 4 is {ay, ..., a,}, where a; is the K"
element for 1 < k < m. Definition 4—1 is applied to denote the
subset-sum problem for any a finite set, A4.

Definition 4-1: The subset-sum problem for an m-element
finite set, 4, is to find a subset 4" = 4 such that the sum of every
element in 4" is exactly b, where b is any given positive integer.

B. Computational State Space of Quantum Solutions for the
Subset-sum Problem

An arbitrary state | g1)> of'a quantum bit is nothing else than a

linearly weighted combination of the following computational

1
basis vectors (4.1): |¢)> =1 - |0> +1- |1> =/ - +1,
O 2x1
0 2
1 , where the weighted factors /; and /, € C~ are the

2x1
so-called probability amplitudes, thus they must satisfy | /, |* + |
Zz |2 =1.

C. Introduction of Quantum Gates for Solving the Subset-sum
Problem

The NOT gate is a one-qubit gate and sets the only (target)
bit to its negation. The CNOT (controlled NOT) gate is a
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two-qubit gate and flips the second qubit (the target qubit) if
and only if the first qubit (the control qubit) is one. The
CCNOT (controlled-controlled-NOT) gate is a three-qubit
gate and flips the third qubit (the target qubit) if and only if the
first qubit and second qubit (the two control qubits) are both
one.

D. Constructing Quantum Networks for Solving the
Subset-sum Problem

The full addition network is illustrated in Figure 4-1, and can
be understood as follows:
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Figure 4-1: Adder network of n quantum bits.

We only reverse all these operations in Figure 4-1 in order to
restore every quantum bit of the three registers to its initial state.
This enables us to reuse the same registers repeatedly.

E.  Quantum Algorithms of Solving the Subset-sum Problem

The following quantum algorithm is proposed as quantum
implementation on a physical quantum. The notations used in
Algorithm 4-1 below have been denoted in previous
subsections.

Algorithm 4-1: The quantum algorithm is to solve an instance
of the subset-sum problem for any given positive integer b with
a finite set 4 involving m elements of # bits.
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10— . .
——=—), where QA is the quantum adder of » bits
( \/5 ) 0. q

denoted in Figure 4-1, b, 1 =y, » AND b, AND ¢ ,_y, ;-1 =
Vs,j-1 AND bj,] AND Cs,j-2 for 1 S] <nand Chj-1="Vk,j-1 AND
bi_1ANDc¢;; rfor1<k<s—-1land1<j<n.

EndFor
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most significant bit of the result from the last execution of Step
(3a).
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(9) Since quantum operations are naturally reversible, the
auxiliary quantum bits can be restored to their initial states by
reversing the operations from Steps (7) to (2).
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(10) Apply Grover’s operator in Grover’s algorithm to the
quantum state vector generated in Step (9).
(11) At most repeat to execute from Step (2) to Step (10) of

22 times.

(12) The answer is obtained with a successful probability of at
1

least — after a measurement is finished.

End Algorithm

Lemma 4-1: For a finite set with m elements, »n bits of each
element in the finite set, and a given positive integer b, the
quantum implementation of the DNA-based algorithm of
solving an instance of the subset-sum problem in Algorithm
4-1 is equivalent to the oracle work in Grover’s Algorithm,
i.e., the target state labeling, preceding Grover’s searching step.
Proof: It is omitted due to space. [l

1.

The following lemmas are used to demonstrate time
complexity and space complexity of Algorithm 4-1 for solving
an instance of the subset-sum problem for any given positive
integer b and a finite set including m elements of » bits.
Lemma 5-1: For any given positive integer b and a finite set
involving m elements of # bits, the time complexity of solving
an instance of the subset-sum problem is O(m + 1) Hadamard

gates, O(2xmxn+2xn+2x1)x 42" ) NOT gates, O((8

COMPLEXITY ASSESSMENT

xmxn+2xn+3x1)x V2" ) CNOT gates, O((4 x m x n +
2xn+2x1)x 42" ) CCNOT gates, O(v/2" ) Grover’s

operators, and O(1) measurement.

Proof: Refer to Algorithm 4-1. i

Lemma 5-2: For any given positive integer b and a finite set
involving m elements of n bits, the space complexity of solving
an instance of the subset-sum problem is O(2 x m x n +m +3 x
n + 5) quantum bits.

Proof: Refer to Algorithm 4-1. i



IV. NMR EXPERIMENTS OF THREE-QUBIT SOLUTION TO THE
SUBSET-SUM PROBLEM

Consider the simplest case of the subset-sum problem with a
finite set 4; = {1} and any given value b = 1. The size of the
first (only) element in the finite set, 4,, is represented as a;, L
The size of b (its size is one) is represented as b .. The value
of m is equal to one and the value of n is also equal to one.
NMR approach has been widely employed to quantum
information processing over past years due to its mature and
well-controllable  technology.  Although the quantum
information processing by NMR is made on ensembles of
nuclear spins, instead of individual spins, NMR has remained
to be the most convenient experimental tool to demonstrate
quantum information processing. We here also adopt this
technology to check our theory.

Note that in NMR measurements, the frequencies and
phases of NMR signals could clearly indicate the state the
system evolves to after the readout pulses had been applied. In
our experiment, the phases of the reference of *C spectra from
a thermal equilibrium were adjusted to be in absorption (i.e., to
be positive), and then the same phase corrections were used to
determine the absolute phases of the experimental spectra of
3C after the algorithm was accomplished. In our case, the final

state was (| 000>123 + |111>123)/\/E which means the three

qubits are entangled. As the readout by NMR is a weak
measurement, we have no state collapse after the measurement.
Besides, only single quantum coherence can be detected in
NMR. As a result, we have to employ some additional
operations to disentangle them for detecting the output state

(| 000>123 + |111>123)/\/E . For this end, we apply a CNOT
gate on the second and first qubits to get the state

(|000>123+|011>123)/\/E. The second qubit is control

quibte and the first qubit is the target qubit. Then the first qubit
can be read out by a s ingle £/ 2 pulse along the x-axis, as
shown in Figure 6-1 (a). Similar steps applied to the second and
third quits, respectively, result in the spectrum in Figure 6-1 (b)
and Figure 6-1 (c). It’s evident that the experimental results are
in good agreement with our theoretical prediction.

V. CONCLUSIONS

We have investigated the availability of quantum
implementation for an instance of the subset-sum problem with
a finite set involving m elements of n bits. We have also
estimate the complexity of our solution and carried out an
experiment by NMR technology for a simplest example.

(@)

Figure 6-1: Experimental spectra (a)-(c) of the three-qubit
solution to the subset-sum problem after the readout on the first,
second and third qubits, respectively.
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